$,, \square \square \square \square$

TECHNICAL DOCUMENTATION 技术文 件

MEASURING TROLLEY FOR TRACK CORRUGATION AND RAIL PROFILES 钢轨波磨和 廓形测量小车

$,, \square \square \square \square$

	. ∃ . ∎
H	- 死∎

1. 介绍	2
2. 启动软件并使用模板 未定义书签。	错误!
2.1. 调整模板	3
3. 数据评估	8
3.1 操作文件	8
3.2 编辑数据	10
3.3 管理窗口	12
3.4 评估部块	13
3.5 图形评估	15
3.5.1 主要数据	15
3.5.2 图形评估计算数据	15
3.5.3 比较两个信号	19
3.5.4 比较两个文件	20
3.5.5 和弦评估	21
3.6 地图	21
4. 轨道廓形 未定义书签。	错误!
5. 程序配置	27

1. INTRODUCTION 介绍

Gekon 11 是一款评估软件,旨在评估在轨道上使用 GEKON 或 GEKON 3D 小车进行的测量过程中获取的数据。手推车用于测量轨道的波纹和轨道轮廓。 Gekon 11 软件的主要功能是根据 EN 13848 使用数学程序在五个波段中计算这些变量的值: D1(0-30 mm), D2(30 - 100) mm, D3(100-300 mm), D4(300-1000 mm)和 D5(1000-3000 mm),并计算不同角度下的轨道头磨损。 该程序是为 Windows 操作系统设计的,而测量的数据则存储在.kzv 数据文件中。

所有计算出的数据都可以表格或图形的形式显示。与所选参考铁路线轮廓相比,铁路线轮廓数据以线的形式 可视化。所有计算出的数据也可以打印。

该软件正在使用 Google Earth 在地图上显示测量的轨迹。

2. 启动软件并使用模板

通过单击开始屏幕中央显示的主图片来运行程序。

选择模板。 模板基本上是一组规则,这些规则告诉软件如何评估数据。

	Select o	onfiguration template	
	Gekon11 settings up to China HSR PtoP limits 20, 20, 30, 150[m]	D1-5, PtoP 1-5, Left D1-5, PtoP 1-5, Right	
EN	Gekon11 settings up to EN13231-3:01/2012 PtoP limits 10, 10, 15, 75[m]	• D1-5, PtoP 1-5, Left	×
		, , , , , , , , , , , , , , , , , , ,	

此时,有两种方法可以处理模板。只需单击即可获取默认模板之一。这些模板可以随时使用,并附带一些准备 好的参数。

或者,您可以根据需要调整模板。通过单击模板栏右侧的工具轮来完成此操作:

2.1. Adjusting of a template 调整模板

从以下开始,有几个参数可以调整(请参见下图):

一般

在此卡中,可以命名模板并添加一些其他说明,以便于定位。同样,可以更改徽标,并且用户可以通过密码保护 自己的模板,以防止任何不必要的更改。

I Krab Configuration Template Editor 1.0	_	×
A General Calculation Data Section evaluation Limits Graphs Local Defects Bench Behavior		
Name and description Name Gekon11 settings up to China HSR		
Description [PtoP limits 20, 20, 30, 150[mi]		
CRM Dealerst		
Password		
Modification protected by password		

计算方式

可以在此卡中添加或更改某些计算参数。 首先,信号结束。 结束点无关紧要,并且有可能在开始和结束时更改 信号的形状。 一种选择是将它们替换为余弦(如图所示),第二种选择是将其替换为零。 同样,替换范围是可 选的。

可以调整滤除器以及不敏感度。

Krab Configuration Template Editor 1.0	-	
General Calculation Data Section evaluation Limits Graphs Local Defects Bench Behavior		
Modify signal ends 2 ♣ [m] Cosine (1-Cos(P1*/((\/dx)))/2		
Dropouts		
Filtr dropouts Limit 150 全 [um] Width 5 全		
Insensitivity 2 😴 [um]		

数据

该卡包含要计算的测量原始数据的简单列表。 该卡无法更改。

A General Calculation	Data	Section evaluation Limits
Data		
Pr_gR0_L		
pr_gR1_L		
Pr_gR2_L		
₽ pr_gR3_L		
pr_qR0_R		
Pr_gR1_R		
Pr_gR2_R		
Pr_gR3_R		
Pr_Speed		

$,, \square \square$

部块评估

在区段评估卡中,区段的长度已更改。还有,评估方法。

iection length [m]	100	Method	Peak-to-Peak Number Exeedings			<	7
Vindow lengths [m]	0.15	P2P D2 <30·100mm> 0.5	P2P D3 <100-300mm>	P2P D4 <300-1000mm> 5.0	P2P D5 <1000-3000mm>		
oving average of RMS a	mpitude limits [mi]	92P D2 <30-100mm>	P2P D3 <100-300mm>	P2P D4 <300-1000mm> 40.0 €	P2P D5 <1000-3000mm>		
loving average of peak-t	to-peak amplitude limits [m]	P2P D2 <30-100mm>	P2P D3 <100-300mm> 30.0 €	P2P D4 <300-1000mm>	P2P D5 <1000-3000mm>		

使用了两种方法(可以在右上角更改方法,如红色箭头所示):

-峰峰值超过

-峰均移动平均值

峰峰值超过

此方法使用超过给定限制的峰百分比。计算两个峰之间的距离,并将这些新点(下图中的红色点)放置在零线上 方。在这种方法中,计算值之间的距离不是恒定的。有一个给定的限制(由图中的红线表示)。该限制在上图中 的黄色框中以及 RMS(标准偏差)幅度的限制中设置。如果超出此限制的峰值数量大于允许的百分比,则需要 保持轨迹。下图提供了此方法的示例。在这种情况下,十三个峰值中有两个超过了限制。这占所有峰的15%。类 别1的限制为5%,类别2的限制为10%。因此,在此示例中,轨道不符合给定的限制,需要维护。

允许百分比的限制位于卡的底部(在上图的蓝色框中),并且可以更改。

.峰到峰移动平均值

软件中使用的第二种方法是移动平均线。原理是计算给定窗口处峰之间距离的平均值。窗口的长度也是可调的 (在带有"区段评估"卡的图片的绿色框中),并且对于每个波长都不同。如果计算出平均值,则窗口继续前 进。该步骤的长度通常为5毫米。在窗口的这个新位置再次计算平均值,然后窗口继续前进。在这种情况下,计 算值之间的距离是恒定的。出现新的重新计算的信号线。如果新行的振幅超过给定限制的长度大于适合给定百分 比的长度,则需要保持轨道。幅度的极限与以前的方法相同,并且可以在此卡中进行调整(上图中的黄色框带有 卡"截面评估")。

下图描述了该方法,其中L代表窗口的长度,L代表峰之间的距离。

限度

如果需要,可以添加每个信号的限制,或在此卡中更改。通常,根据卡"截面评估"中设置的限值(即峰峰值幅度限值的移动平均值)来选择限值。但是,此限制完全不影响部分评估。由于通过峰峰值方法计算的信号只能为正,因此根据卡的"截面评估"选择上限,将下限设为"**0**"。

该卡与下一张卡-图形相关。如果信号线越过极限,则该部分信号可以着色并显示峰值。如果图中显示了多个信 号(一次最多**3**个),则仅对第一个显示极限。第二(第三)信号的限制被忽略。在下一章中有更多内容。

D2_L Limit parameters Symetric limits Limit - Limit + -5.0 I Io.0 I

图表

该卡用于拾取图形,调整图形或制作新图形。在卡的左侧有一个准备好的图形列表。可以选择或调整其中之一。

有几个选项可以调整图表。

a)图形名称。

b)图形的方向。

c)路径名。在该阵列中,有一个带所选信号和一些其他信息(例如信号比例)的条带名称。

d)用信号线调整条纹的实际宽度。 该宽度(以毫米为单位)是 A4 纸上将来的实际宽度。

e)调整信号的最小/最大。这是信号的范围,即刻在所选的条带宽度上。如果条纹是 20 毫米宽,则最小。是-20,最大值 是 20,图的比例是 1:2。

f) 信号。一个条带中最多可以包含三个信号。在所有信号处都有可能拾取线的颜色。在信号2和3处,也有可能放大信号,因此该图更加清晰。

Krab Configuration 1	femplate Editor 1.0				- 0
neral Calculation Da	ta Section evaluation Limits Graphs Local	Defects Bench Behavior			
(- (·					
•	Graph parameters				
5, PtoP 1-5, Left 5, PtoP 1-5, Right	Graph name	3			
	D1-5, PtoP.1-5, Left	a			
	Print orientation				
	Portrait				
	C Landscape				
	Paths	e		f	
	Path name C	Width [mm] Min [mm] Max [mm]	Signal 1	Signal 2 Amplification	Signal 3 Amplification
	D1 <10-30mm> 1:5	35 <table-cell-rows> -70 🗢 105 🜩</table-cell-rows>	D1_L 👻	P-to-P D1_L • 1.00 -	▼ 1.00 🚖
	D2 <30-100mm> 1:5	35 🗢 -70 🗢 105 🗢	D2_L •	P-to-P D2_L • 1.00 🜩	▼ 1.00 🛫
	D3 <100-300mm> 1:5	35 🔹 -70 🔹 105 🖨	D3_L 💌	P-to-P D3_L • 1.00 🛫	▼ 1.00 €
	▼ D4 <300-1000mm> 1:20	40 🗢 320 🗢 480 🗢	D4_L ·	P-to-P D4_L • 1.00 🜩	▼ 1.00 €
	D5 <1000-3000mm> 1:20	40 🔹 -320 📚 480 🗢	D5_L 💌	P-to-P D5_L 💌 1.00 🛫	• 1.00 🗢
		30 🜩 200 🗢 200 🜩	•	• 0.20 🔹	■ <u>•</u> 1.00 ↓
		30 🔹 -200 📚 200 🖨		▼ 1.00 ÷	• • • • • • •
		10 💠 10 🗢 10 🗢	-	• 1.00 \$	▼ 1.00 €
		24 🗢 12 🗢 36 🗢	-	■ ▼ 1.00 ‡	■ ▼ 1.00 ♀
		10 € -10 € 70 €	-	▼ 1.00 숮	▼ 1.00 🜩
		10 💠 -10 🗢 50 🜩		• 0.00 •	• • • • •
		10 0 0 50 0	-	▼ 0.00 \$	▼ 1.00 €
		10 0 0 50 0		■ 0.00 €	■ ▼ 1.00 ‡
		10 0 0 0 0		● 0.00 全	■ ····· ▼ 1.00 ↓
		10 0 0 50 0		▼ 0.00 \$	•••••••••••••••••••••••••••••••••••••••

$,, \square \square \square \square \square \square \square \square \square \square$

单击"加号"按钮可以制作一种新的图形。同样,通过单击"减号"按钮,突出显示的图形也将被删除。所有数据可以手工填写,也可以通过单击"复制数据"按钮从另一个现有图形复制。

A General Calculation Data	Section evaluation Limits Graphs Lo	cal Defects Bench Behavior			
+ - D1-5, PtoP 1-5, Left D1-5, PtoP 1-5, Roht Graph - unnamed	Graph parameters Graph name Graph name Graph unnamed Print orientation C Portrait C Landscape Path name Path name	Uddt [mm] Max [mm] 40 ± 10 ± 50 ± 40 ± 10 ± 50 ± 40 ± 10 ± 50 ± 40 ± 10 ± 50 ±	Signal 1 Signal 2	Amplification Signal 3 ▼ 1.00 全 ■ ▼ 1.00 全 ■ ▼ 1.00 全 ■	Amplification

当地缺陷

该卡不起作用。

Bench

在此卡中设置用于和弦评估的参数。可以调整工作台的长度以及评估的限制。

行为

此卡仅允许或禁止突出显示部分。

3. 数据评估 DATA EVALUATION

可以通过几种不同的方式评估所有测量数据。段落评估,图形评估,和弦评估。该程序还能够计算出轨头的磨损,并与选定的轨型的形状进行比较,并显示在图表上。所有功能都可以在主栏中找到。在下一章中将介绍所 有功能。

Ĩ	Gekon ⁻	11 [Gekor	n <mark>11 set</mark> t	tings up	to Chir	na HSR 0)2_TemplateGel	con11_C	China rai	lways_H	SR.mct]							
File	Edit	Options	Eval	uation	Graph	Video	Window H	elp										
B	⊕	ß		ß	Ø		£] ⊟	Ħ			₽		Ø	25	ŞY	6	Ħ	Ē,

3.1 处理文件

可以使用栏中的左按钮(如下图所示)或"文件"按钮直接管理文件。

打开文件:

通过按钮打开文件打开文件(1),在窗口左侧的树中选择带有待评估数据的文件(2)。在窗口右侧的列表中选择一组数据(3)。在此列表上方,有一些有关所选文件的信息。单击"打开"按钮(4)。

出现另一个窗口。可以在此窗口中更改文件的标题,并可以添加一些其他子标题。底部有一些有关测量的信息。同样,在此窗口中,可以显示事件列表。检查所有信息或事件,然后单击"确定"继续。

EKON – Eva	luation program Gekon	
	\Box \Box \Box \Box \Box \Box	
	Editation of the file head X	1
	Heading: xuzhou metro2 Subheading: 2	
	Date and time Data of trolley 6.8. 2020 Ser.No.: DGEK3D003	
	0.49 Nr. of values: 0 Measuring Nr. of Samples: 97367 Starting KM: 13.200159 €	
	Trolley position C UP C DOWN C DOWN	
	Resampling parametres	

下一个窗口显示有关在上部选择的文件的一些信息。在下面可以选择计算结果 - 在这里可以选择图形和截面评估 的类型。如果选取了所有参数,则有两个继续进行的选项。首先是单击"确定"按钮。使用此选项,程序可以 按设置使用数据,但尚未完成任何操作。此选项将在本手册中选择。第二个选项是单击"重新计算并显示报 告"。在这种情况下,将根据所选模板计算所有数据,并立即显示带有截面评估表的图形。

File		
Name xuzhou metro2	Note 2	File name 200806004910_xuzhoù_metro2.kzv
Reports Graphs	Acceptance citeria table	ОК
✓ D1-5, PtoP 1-5, Left D1-5, PtoP 1-5, Right	✓ Section Evaluation Peak To Peak [%] - Class 1 Section Evaluation Peak To Peak [%] - Class 2 Section Evaluation Peak To Peak [%] - Statistics [Max,	Cancel
		Recalculate and show report

可以一起打开更多文件。打开的文件列表位于主软件窗口的右下角。

xuzhou metro3 (200806015444_xuzhou_metro3.kzv)

关闭文件

如果评估并打印了数据,请单击"关闭文件"按钮关闭文件。

储存档案

如果对文件进行了一些更改(将要保存),请单击"保存文件"按钮。

3.2 编辑数据

可以直接编辑数据-使用主栏上的按钮,或通过"编辑"按钮。

头部编辑

此按钮用于编辑文件头。

主数据编辑

此按钮用于打开和编辑主要数据。

小节

此按钮用于剪切数据。数据文件的长度可以在文件的开头和结尾进行修改。按下"Subsection"按钮后,将显示具有设置长度的窗口。首先,必须选择选项"选定的部分"。必须填写开始和结束样本以缩短长度。所选样本旁边有一公里的所选点。

Gekon 11 [Gekon11 settings up to EN13231-3:01/2012 03_TemplateGekon11_EN13231.mct] Elia Edit Octions Evaluation Graph Video Window Help	- 🗆 X
	21 🏓 🗄 🖶 🖏
Subsection function	
Subsection parameters X Work with section Full section Selected subsection The first sample Start KM 8200 Im 111,160026 The last sample End KM Cancel	
	1630 [200930010257_R.mdk]

指定点的样品编号可在左上角的图形评估-黑色字段中找到。

GEKON – Evaluati	on program Gekon	
	5.8.0.	
	Image: Second	
	KM / Samples 0mm > 1:5	
 Gekon 11 [Gekon11 settings up to EN13231-3:01/201 File Edit Options Evaluation Graph Video 	03_TemplateGekon11_EN13231.mct] - [Graphic evaluation - D1-5, PtoP 1-5, Left] Window Help	
88834883	E III P E P E M M D 11 \$	
Graphic evaluation + D1-5, PtoP 1-5, Left .		
66200 Number of the samle at point 1	1,450	111,450
D1 < 10-30mm > 1:5 - selected signal is not ava	able in this file Cf	nosen point

也可以使用位于样本字段旁边的 potenciometr 选择小节的公里数。 左右移动电位计将改变公里数。 确切的公里数(少量)可以使用向上/向下箭头进行修改。

and parameters	×	
with section		
III section		st.
elected section		
ted subsection		_
rst sample Start KM		
		•
ast sample		1 1

.确认第一个和最后一个样本后,将根据选定的部分剪切所有数据。所有结果将仅针对所选部分进行评估和打印。剪切的数据可以通过"另存为"功能保存。

该小节也可以在"图形"中创建,请参见第3.5.2章。

3.3 管理视窗

可以在该软件中显示不同的结果。这些结果中有许多是相互关联的,可以方便地一次查看更多结果。有订购按 钮可以这样做:

显示的结果如下所示:

• • • • •	D Graphic evalu	ation · D1·5, PtoP 1·		in the second			Section Evaluat	tion Peak To	Peak [%] · Cla						
Rail profile - xuzhou	metro2 (2008060)	4910 xuzhou meti	ro2.kzv1				19 Graphic	evaluation -	D1-5. PtoP	1-5. Left					•
Angle r Lat. Wear Ve	rt. Wear Lip :	ad point dX;dY Seler	cted point dX;dY	Lip REF diff a	r Lat Wear) An		0	í I							
		£	桓	91.46				<u> </u>				-			^
140 120 100 80 60	40 20 0 -20 -40	1.6080	-80 -60 -40 -2	0 0 20 40 60	80 100 120 140	0									
	- Allighter	20 \$		-11.04	20	-			0000	0.000	0000	0.000	00007	0.00.00	
-20					-2				1.0.0				V.V.V.V.V.		
-40	+			5+	-4									11	
-60	1 (Hitte			11	-61) al		D4 <300-1	1:20 (000mm)	D					
-80		1.1.			-1	·									
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
120	1 T			T			· · · · ·								
120 140	JI,			J	-1.	80						~ •	~ .		
-120 -140 -160	/L			J	-1.	80		· · · · ·	.:/	\sim	<u></u>	<u> </u>	<u> </u>	····	
120 -140 -160 -180 -200			٢	<u>J</u>	-1			·	·`/	\checkmark	<u> </u>	<u>~_</u>	<u>/~:</u>	···-	~
120 140 160 180 13.200159	/L		٢	J.	-1: -1: -1: -1: -1: -1: -1: -1: -1: -1:		- 5 +	• • • •	···/	\checkmark	<u></u>	<u>~`</u>	<u>,</u>		- 10
120 140 160 180 200 13.200159 4 Section Evaluation 6			٢	J	-1: -1- -19 -19 -19 -19 -19 -19		- 5 +	• • • •	···/	<u> </u>	<u></u>	<u>``</u>	<u> </u>	• • • •	J 10
120 140 160 180 200 13.200159 Section Evaluation F et Bal Biote Bal	eak To Peak [%] -	Class 1	Ę		-11 -14 -19 -19 -19 -19 -19 -19 -19		- 5 •				· · · ·	<u> </u>	<u>~</u>	 	, v J 10
-120 -140 -160 180 -160 180 -160 180 -160 -160 -160 -160 -160 -160 -160 -160 -18	/	Class 1	€ <100-300∰	4 < 300 - 1000	-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -		- 5 ·	•		~		<u>``</u>	<u>~</u>		J 10
120 140 150 150 150 150 150 150 150 15	reak To Peak [%] -	Class 1 nrfi2 <30-100mb2) 20 (5 %)	€ <100-300∰ 30 (5%)	a <300-100ms 150 (5 %)	<1000-3000m 400 (10 %)		- 5 ·			<u> </u>		<u> </u>	<u>~</u>		1
120 140 150 200 200 13.200159 • Section Evaluation F eft Rail [Right Rail] KP4 LTM 3.200 - 13.200	reak To Peak [%] - D1 <10-300 20 (5 % 0.0 0.0	Class 1 1 20 (5 %) 0.0	\$ <100-300m 30 (5 %) 85	4 <300-10086 150 (5 %) 1.5	-1000-3000m 400 (10 %) 0.0		- 5 +			<u>`</u>		<u> </u>	×:) 10
120 140 150 150 151 13.200159 1. 13.200159 1. 13.200159 1. 13.200159 1. 14. 13.200159 1. 14. 14. 14. 14. 14. 14. 14.	reak To Peak [%] -	Class 1 Tratiz <30-100mit/ 0.0 0.1 0.0	€ <100-300m 30 (5%) 55 22.7 28.6	4 <300-10086 150 (5 %) 1.5 0.0 0.3	-11 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		5.			<u>·</u>		<u> </u>	<u> </u>		J 10
120 140 150 150 150 150 150 150 150 15	reak To Peak [%] - p1 <10-30 20 (5 % 0.0 0.0 0.0 0.0	Class 1 mili2 <30-100ml2) 20.0 5%) 0.1 0.0 0.1 0.0 0.1	\$ <100-300m 30 (5%) 5.5 22.7 28.6 18.3	a <300-100ms 150 (5 %) 1.5 0.0 0.3 1.0	 1000-3000m 400 (10 %) 0.0 2.3 4.8 1.1 		- 5 •					<u> </u>	<u> </u>	,	J 10
120 140 150 150 150 150 150 150 150 15	reak To Peak [%] - Ú < 10-30 20 (5 % 0.0 0.0 0.0 0.0 0.0 0.0	Class 1 1000 20 (5 %) 0.0 0.1 0.0 0.1 0.0 0.1	\$ <100-300m 30 (5%) 23 22.7 28.6 15.3 15.4	a <300-100086 150 (5 %) 1.5 0.0 0.3 1.0 5.0			. 5 .					<u>``</u>			v 1 10
120 140 150 150 150 150 150 150 150 15	cak To Peak [%] - D1 <10-300 20 (5 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Cless 1 THE <30-100mB 0.0 0.1 0.0 0.1 0.0 0.0 0.0	\$ <100-300m 30 (5 %) 227 28.6 35.4 35.6	a <300-100 ms 150 (5 %) 1.5 0.0 0.0 1.0 5.0 1.4	-1000-3000m 400 (10 %) 0.0 2.3 4.8 1.1 0.0		. 5 .					<u>``</u>	×		10
120 140 150 150 150 150 150 150 150 15	reak To Peak [%] - D1 <10-300 20 (5 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Class 1 mitiz <30-100miti) 20 (5 %) 0.0 0.1 0.0 0.1 0.0 0.0 0.0	\$ <100-300m 30 (5 %) 85 88.6 18.3 15-4 18.6	a <300-100ms 150 (5 %) 1.50 0.0 0.0 5.0 1.4	 -1. -1.		- 5 +					<u> </u>	×		· ·
120 140 150 15200159 () 15200159 () 1	reak To Peak [%] - bit <10-30 20 (5 % 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Class 1 1000 2 < 30-100 mbl) 20 (5 %) 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0	€ <100-300mb 30 (5%) 52 227 886 98.3 55-4 8.6	a <300-10086 150 (5 %) 1.5 5.0 1.4	100-3000m 400 (10 %) 0.0 2.3 4.8 1.1 0.0 1.6		. 5 1								10
120 140 150 150 150 150 150 150 150 15	eak To Peak [%]- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Class 1 1162 <30-100mB) 20 (5 %) 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0	\$ <100-300m 30 (5 %) 27 266 8.3 15.4 18.6	(<300-1008bb 150(5%) 0.0 0.3 1.0 5.0 1.4	(100-3000m) (100-3000m) (23) 4.8 1.1 0.0 1.6]					<u>~</u>		10

3.4 部门评估

如果在上一步中选择了"确定"选项,则程序主窗口为空-打开文件。需要计算数据,然后选择一种评估方法。 让我们从部分评估开始。

单击"计算数据"图标,将通过不同的评估方法来计算所有数据并准备好结果。通过单击"部门评估"图标,可以显示按部门对数据进行排序的表格。有一些显示的表格选项:

-峰到峰 - 1级

-峰到峰 - 2级

-峰到峰 - 统计

-有效值

峰到峰 - 1级/2级

Gekon 11 [Gekon11 settings up to China HSR 02_Templated	Sekon11_China railways_HSR.mct]	- [Section Evaluation Peak To Peak	: [%] - Class 1]		1.000		
🗑 File Edit Options Evaluation Graph Video Windo	ow Help					_ 8 ×	
88531088316		📓 🖂 🖄 🖄	S 🗩 🖻 🖶				
Section Evaluation Peak To Peak [%] - 0	Class 1						
Left Rail Right Rail							
КМ	D1 <10-30mm>	D2 <30-100mm>	D3 <100-300mm>	D4 <300-1000mm>	D5 <1000-3000mm>		
LIM	20 (5 %)	20 (5 %)	30 (5 %)	150 (5 %)	400 (10 %)		2
13.200 - 13.300	0.0	0.0	8.5	1.5	0.0		
13.300 - 13.400	0.0	0.1	22.7	0.0	2.3		
13.400 - 13.500	0.0	0.0	28.6	0.3	4.8		
13.500 - 13.600	0.0	0.1	18.3	1.0	1.1		
13.600 - 13.687	0.0	0.0	15.4	5.0	0.0		
(All) 13.200 - 13.687	0.0	0.0	18.6	1.4	1.6		

这是截面评估的示例-1 类。左侧有每个导轨的卡。 截面长度为 100 m,显示了所有波段。 如果在某些时候数据 不适合给定的限制,则阵列将变为红色。

11

在右侧有一些按钮。 首先(从顶部开始)是可以显示文件标题的按钮(请参见下面的图片)。 第二个按钮用于 保存数据,第三个按钮用于打印数据。

🗓 Gekon 11 🛱 File Edi	[Gekon11 settings up to Chi t Options Evaluation G	na HSR 02_Te iraph Video	mplateGekon1 Window H	1_China railw elp	ays_HSR.n	ict] - [Sec	tion Evalu	ation Peak T	Peak [%]	- Class 1	1]					-		-	×
B* &	8 9 / 10	🔤 🕌	E .			5 🔛		× 1	25	-			8 6	b					
	Section Evaluat	ion Peak To Pea	ık [%] - Class 1 .		[
Heading : Subbeading :	xuzhou metro2 2																		
Data file : Limits for :	200806004910_xuzhou_metr Class 1	o2.kzv		Date, Tir Position	ne: 6/i : Un	1/2020, 0:- correct	19, -4811 m	n.											L'
KM Od - Do:	13.200159 - 13.686989		2						_										
	KM			D1 <10-3	0mm>		D2 <30	-100mm>		D3 <1	100-300n	nm>		D4 <300-1000mm>	D	5 <1000-3000mm	n>		
	LIM			20 (5	%)		20	(5%)			30 (5 %)			150 (5 %)		400 (10 %)		1	
13.200 - 13.30	10		0.0			0.0			8.5				1.5		0.0				
13.300 - 13.40	10		0.0			0.1			22,				0.0		2.3				
13.400 - 13.50	0		0.0			0.0			28.				0.3		4.8				
13.500 - 13.60	10		0.0			0.1			18.				1.0		1.1				
13.600 - 13.68	17		0.0			0.0			15,	4			5.0		0.0				
																		e II.	

峰到峰 - 统计

此选项将按部分显示测量数据的主要统计信息。 最大值和最小值,标准偏差,幅度的正平均值和幅度的负平均 值。

Gekon 11 [Gekon11 settings up to China HSR 02_ File Edit Options Evaluation Graph Video	TemplateGekon11_Chin Window Help	a railways_HSR.mct] - [Sectio	n Evaluation Peak To Peak [%]	- Statistics [Max, Min, σ(STD),]			
° 🔍 📑 💁 🎽 🌌 🛣 🛣			20		R		
Section Evaluation Peak To Pe	ak [%] - Statistics [
KM	stat	D1 <10-30mm>	D2 <30-100mm>	D3 <100-300mm>	D4 <300-1000mm>	D5 <1000-3000mm>	
13.200 - 13.300	Мах	6.77	9.14	33.82	129.36	176.38	
	Min	-5.85	-7.66	-31.85	-144.55	-134.75	
	σ(STD)	1.35	1.97	6.72	17.05	42.72	
	φ+	1.06	1.57	5.14	11.67	32.84	
	φ-	-1.07	-1.54	-5.22	-11.60	-31.25	
13.300 - 13.400	Max	7.19	12.83	47.46	69.85	278.93	
	Min	-5.67	-12.50	-53.91	-73.47	-244.93	1
	o(STD)	1.40	2.26	9.01	16.60	59.24	<i></i>
	φ+	1.09	1.78	6.89	12.25	41.07	
	φ-	-1.11	-1.78	-6.98	-12.63	-40.41	

RMS

为了显示按部分显示的标准偏差,有功能 RMS:

ekon 11 [Gekon ile Edit Opti	n11 settings up to China HSI ions Evaluation Graph	R 02_TemplateGekor Video Window	n11_China railways_HSR. Help	mct] - [Section Evalu	ation - RMS]				- 0	- 1
A B	Section Eva	Iuation - RMS			S 💁 211	►				
un nigrit nali										
Number	Name	Rail	Begin	End	D1 <10-30mm>	D2 <30-100mm>	D3 <100-300mm>	D4 <300-1000mm>	D5 <1000-3000mm>	-
Number	Name	Rail	Begin	End	D1 <10-30mm> 0.020	D2 <30-100mm> 0.020	D3 <100-300mm>	D4 <300-1000mm> 0.150	D5 <1000-3000mm> 0.400	
Number 1	Name xuzhou metro2	Rail	Begin 13.200	End 13.300	D1 <10-30mm> 0.020 0.001	D2 <30-100mm> 0.020 0.002	D3 <100-300mm> 0.030 0.007	0.150 0.017	D5 <1000-3000mm> 0.400 0.043	_
Number 1 2	Name xuzhou metro2 xuzhou metro2	Rail	Begin 13.200 13.300	End 13.300 13.400	D1 <10-30mm> 0.020 0.001 0.001	D2 <30-100mm> 0.020 0.002 0.002	D3 <100-300mm> 0.030 0.007 0.009	D4 <300-1000mm> 0.150 0.017 0.017	D5 <1000-3000mm> 0.400 0.043 0.059	
Number 1 2 3	Name xuzhou metro2 xuzhou metro2 xuzhou metro2	Rail	Begin 13.200 13.300 13.400	End 13,300 13,400 13,500	D1 <10-30mm> 0.020 0.001 0.001 0.001 0.002	D2 <30-100mm> 0.020 0.002 0.002 0.002 0.003	D3 <100-300mm> 0.030 0.007 0.009 0.010	D4 <300-1000mm> 0.150 0.017 0.017 0.018	D5 <1000-3000mm> 0.400 0.043 0.059 0.071	
Number 1 2 3 4	Name xuzhou metro2 xuzhou metro2 xuzhou metro2 xuzhou metro2	Rail	Begin 13.200 13.300 13.400 13.500	End 13.300 13.400 13.500 13.600	D1 <10-30mm> 0.020 0.001 0.001 0.002 0.002	D2 <30-100mm> 0.020 0.002 0.002 0.003 0.003	D3 <100-300mm> 0.030 0.007 0.009 0.010 0.009	D4 <300-1000mm> 0.150 0.017 0.017 0.018 0.017	D5 <1000-3000mm> 0.400 0.043 0.059 0.071 0.047	

3.5 Graphic evaluation 图形评估

3.5.1 Primary data 主要数据

在计算测量数据之前,所有测量的原始数据都可以图形形式显示。此时,可以检出或管理数据。单击"编辑" "数据""所选信号"可以显示主要数据。主要数据无法一次全部显示,但是有可能拾取更多信号并管理要一起 显示的窗口,如下图所示。

3.5.2 Graphic evaluation of calculated data 计算的数据图形评估

Calculated data are handled by following icons:计算的数据由以下图标处理:

通过图标"图形评估"显示计算数据的图形。在此按钮下选择要显示的一组值,然后显示。图形的形式在模板 中设置(在第 2.1章 - 图形中介绍)。图形的主要比例尺控制在左下方(红色框)。

11 🗓 Gekon 11 [Gekon11 settings up to China HSR | 02_TemplateGekon11_China railways_HSR.mct] - [Graphic evaluation - D1-5, PtoP 1-5, Left] × 🗭 File Edit Options Evaluation Graph Video Window Help E X 88524881 111 Graphic evaluation - D1-5, PtoP 1-5, Left ... **P** 6 ÷ †∔ P an a light a she was a stream and many the later of the second stream the second second stream a stream a stream E E †↓ D3 <100-300mm> 1:5 m winn AAAA **†**4 5 + 4 100 % on - D1-5, PtoP 1-5, Left xuzhou metro2 [200806004910_xuzhou_metro2.kzv] phic evaluation

GEKON – Evaluation program Gekon

可以通过右侧的图标(在黄色框中)如下调整显示的图形。

活动

可以使用此图标显示轨道上的事件列表。

-打印

可以使用此图标打印图形。第5章将详细介绍打印设置。

-最小/最大

可以使用此图标来调整图表中"y"轴的最小或最大值。在下面的第一张图片中,原始的(默认)D3波长图。 如图所示,通过调整最小值和最大值来更改图形。通过双击所选波长条中任何位置的空间,可以完成相同的操 作。

5.8.0. 11 D3 <100-300mm> 1:5 x 105 ¢ Max un n' -70 Min : \$ 1 1.0 \$ 1 k: L. D3 <100-300mm> 1:5 ٠. . . x -Max: 30 \$ Min : -210 \$ 1 1.0 1 k · 11

此外,双击图可以显示路径指定点的确切值。一次显示所有波长的值。

小节

通过此图标,只能拾取并显示一部分测量数据。用鼠标右键标记所选部分的开始,然后用鼠标移至所选部分的末 尾并再次单击鼠标右键。现在,仅显示所选部分并可以对其进行评估(这也会影响该部分的评估)。

-着色峰

11

使用此按钮可以对超过给定限制的所有峰进行着色。

.-向峰值添加值

使用此按钮显示所有超出的峰值的值。

.-高亮显示部分(+,-)

可以通过按钮"+高亮显示部分"来高亮显示部分。使用鼠标右键拾取要突出显示的部分的开头以及结尾。如果 所选部分变成黑色(下面的第一张图片),请单击图标"+加亮显示部分",检查信息表(下面的第二张图 片),所选部分将显示为灰色(下面的第三张图片)。如果不需要突出显示该部分,则使用图标"-高亮部 分",并且所选部分保持白色。

$,, \square \square \square \square$

3.5.3 Comparing of two signals 比较两组信号

如果需要比较两个信号,则使用此按钮。选择信号并在一张图中显示。

File	Edit	Option	is Ev	raluation	n Grap	ph Vic	leo W	indow	Help		£]I	p			Ø		2	5	\$ *		1 🖽] [
								Sel Sel S F S F S S F	ection of s iignal 1 File xuzhou me Signal name pr_qR0_L iignal 2 File xuzhou me Signal name pr_qR1_L	signals tro2 (2008 a tro2 (2008 a	30600491	0_xuzho 0_xuzho	ou_metri	02.kz↓ ↓ 02.kz↓ ↓]]	OK Cance	×								

如果选择了信号,则显示两个窗口。用于比较的信号显示在第一个(上部)窗口中,在第二个(底部)窗口中两个选定的信号之间存在一个差分信号。

也可以从两个不同的文件中选择信号,但是两个文件都必须打开并重新计算。打开的文件列表位于主窗口的右下 角(下图的黄色框)。

.第二个选择的信号可以在第一个窗口中移动,因此信号可以彼此拉直。信号可以使用向右箭头移动一点,或在 中间按正方形较大的部分移动(如下图所示)。两种信号都可以在底部窗口中同时移动。

3.5.4 比较两个文件

如果需要比较两个文件,则使用此按钮。一张图显示了 D1-D5 波段的信号。

I File	Sekon 1 Edit	11 [Geko Option:	n 11 sel s Eva	tings up luation	to Chii Graph	na HSR Video	02_Tem Wind	plateGel low H	kon11_0 elp	hina ra	lways_H	ISR.mcl	1								()	×
B'	₽.	B	2	Ø	ø		S I		111	增	Ĩ	Þ			Ø	25	5	r E	6 H	6		
									Select Fil Xi Xi	tion of 1 1 1 2 1 2 1 2 1 2 1 2 1 0 1 1 1 1 1 1	iiles tro2 (20) tro2 (20)	1806004 1806004	910_xuz 910_xuz	hou_me	ro2.kzv_ ro2.kzv_	OK Cance	×					

可以移动第二个信号以进行比较(箭头稍微移动一点,中间的正方形放大一点)。执行此操作的条位于图表的正下方。下部的条用于移动整个图形(两个信号一起)。

3.5.5 chord 评估

使用此按钮进行和弦评估。所用工作台的参数在模板第2.1章"工作台"中设置。必须选择音轨(左,右),然 后显示和弦评估图。超出的峰可以着色,并且超出的峰的值可以在此图中显示。图形也可以打印。所有操作都 可以通过图形右侧的图标(图片中的黄色框)完成。

3.6 Map

2

可以使用"地图"图标在地图上显示测得的踪迹。该软件正在使用 Google 地图。

4. 钢轨廓形

轨道轮廓测量也是 GEKON 测量手推车上使用的附加选项,该手推车必须配备 3D 摄像机。这些摄像机采用三角原理,以 0.25m 的规则步长用于非接触式连续扫描轨道轮廓。会实时计算并显示导轨头的磨损以及导轨头的形状。等效圆锥度的参数在数据后处理中可用。可以根据所选配置同时测量一个或两个导轨。

测得的轨道轮廓与轨道几何数据存储在同一文件中。评估软件 Gekon 11 可以同时显示轨道轮廓和轨道微几何数据。轨道轮廓也可以导出到 DXF。

导轨头磨损是通过两个角度计算的(请参见下图)。第一个角度确定了 REF 轮廓上的点(黄色点),在其中 搜索了轨头磨损。另一方面,第二个角度确定实际测量轨上的点(绿点)。然后,将导轨头的磨损计算为第二 角度给定的直线上这两点之间的差。

有几种不同的角度可以搜索和计算导轨头的磨损。这些角度的列表以及用于计算的第二角度的列表都放置在 REF 配置文件中。

		<dir></dir>	27.08.2020 11:00
Data Gekon 11]		<dir></dir>	09.07.2020 10:39
[temp]		<dir></dir>	27.08.2020 11:00
[Vyvoj]		<dir></dir>	13.08.2020 09:45
Gekon	ini	6 142	27.08.2020 11:00
Gekon11	log	49	27.08.2020 11:00
T Gekon11	exe	6 429 696	06.08.2020 15:08
60CN	refProfile	61 042	31.07.2020 13:15
	mct	33 840	30.07.2020 22:09
□ 03 G Lister - [d:\Data B\KZV\Gekon11\60CN.refProfile]	mct	25 802	24.06.2020 15:00
Soubor Upravit Možnosti Kódováni Nápověda 1%	bat	18	18.06.2020 21:26
S HEAD ABEA=2123	refprofile	46 571	19.05.2020 18:44
Be HEAD CENTER X=35.4	xml	35 412	19.05.2020 15:41
Ge HEAD_CENTER_Y=-43.7	licence	313	19.05.2020 13:33
3 M	db	3 072	19.05.2020 13:20
UI MERGE_POINT_X_AXIS=30;-110	refProfile	41 162	11.11.2019 17:16
C MERGE_PUINI_Y_AXIS=0;-155	Ing	16 113	24.09.2019 09:21
	refProfile	44 158	05.06.2019 13:36
	dll	580 701	20.03.2012 20:21
#AngleFromHeadCenter:WearCalcAngle			
CUSTOM WEAR CALC POINT 0-0;0			
CUSTOM_WEAR_CALC_POINT_1=-3;-2			
CUSTOM_WEAR_CALC_POINT_2=-7;-5			
CUSTOM_WEAR_CALC_POINT_3=-15;-10			
CUSTOM WEAR CALC PUINT 4 - 20;-15			
CUSTOM_WEAR_GALG_FOINT_U=769,723 CUSTOM_WEAP COLF PAINT 7=30-30			
CUSTOM WEAR CALC POINT 8-32:-35			
CUSTOM WEAR CALC POINT 9=-40;-45			

以下按钮用于打开轨道轮廓:

25

.现在,将出现对话框窗口,并且需要选择参考导轨配置文件(REF 配置文件)。 REF 配置文件根据测量轨道中 使用的轨道进行选择。

Confirm		×
?	REF Profile NOT defined	l. Do you want to LOAD it ?
	ОК	Cancel

Dolast hledání:	ofile	▼ + € * ■ •	×
Rychlý přístup Plocha Knihovny Tento počítač	Název Data Gekon 11 temp Vyvoj 60CN.refProfile 3492.refprofile UIC 60.refProfile UIC 54 (54E1).refProfile	Datum změny 09.07.2020 10:39 25.08.2020 14:45 13.08.2020 9:45 31.07.2020 13:15 19.05.2020 18:44 05.06.2019 13:36 11.11.2019 17:16	Typ Složk Složk Složk Soub Soub Soub

.有一个"确定"按钮进行确认。

现在,已加载导轨配置文件,并且需要在下一个窗口中进行一些其他设置。

在"REF 配置文件参数"框架中存在合并点的位置。这些是将钢轨拉直的点(红色圆圈中的点)。

在"STEP 1"框架中选择了倾斜度。倾斜度是由测得的轨道上的倾斜度给出的。

在"STEP 2"框架中设置被测头饰被认为有效的范围。 如果头饰的值超过此限制,则认为数据无效,并被过滤掉,例如草皮或微光。

定制磨损的角度列在"STEP3"框架中。

如果设置了所有参数,则必须通过右上角的十字按钮关闭窗口。所有参数将保持设置。现在将显示导轨头磨损的图表。

右侧的图标(黄色框)用于管理图形,并在下文中进行描述。

切换到独立窗口

此图标切换到一个独立的窗口。要查看轨道轮廓以及微观几何图或截面评估图,请使用按钮来管理窗口(第**3.2**章)。

-缩放

11

这些图标用于放大或缩小。可以通过鼠标的中央滚轮来完成此操作。通过按住鼠标右键,可以移动整个图形。

-保存到 CSV 文件

此图标将文件保存到 CSV。

-印刷

此图标打印当前图形。

-标记参考点

可以使用该按钮标记参考点。它在图中显示为绿色点。

加载(删除)REF 配置文件

通过这些按钮可以更改 REF 配置文件。

-设置参考资料

此按钮显示所选 REF 配置文件的参数。 这些可以更改。

-合并点设置

可以使用此按钮调整合并点。

-着色和显示差异

REF 配置文件和实际测量的铁路配置文件之间的差异使用此按钮进行着色,并且值以百分比显示。

.-显示差异值

此按钮用于以不同角度显示以毫米为单位的导轨头的磨损值。

按住鼠标右键可以移动整个图形。

5. PROGRAM CONFIGURATION 程序配置

有以下用于程序配置的按钮:

2H

在此按钮下,可以在三张卡中更改几个参数。

选件

可以在此卡中更改语言,可以选择要导出的内容,也可以添加徽标。

Print

图形评估打印的参数在此卡中设置。在上部打印颜色,线条粗细和边距。中间的 KM 打印比例表示在 A4 纸上显示的图形长度。对于较短的部分,由于开关的长度可以放大,因此图形更清晰。使用"选项"中的底部选择应该在图形上的参数。字体大小或图形和评估可以在卡片的左下角进行调整,因此最终的结果是清晰而流畅的。

Black & White Border lines: 3 ÷ KM : 1 ÷ Graph lines: 2 ÷ Limits : 1 ÷ 5 ÷ mm 5 ÷ mm		-	1- <u>-</u>				
					3 ‡ 1 ‡	Border lines: KM :	ີ Black & White
KM print scale - 100m KM Grid 50 (mm) 50 (mm) 50 (mm) 5 (mm) 0ptions Font size Image: Print events Font size		5 🌩 mm	m	5 🚖 mm	2 主 1 主	Graph lines: Limits :	Colored
50 (mm) 50 (m) 5 (m) Options Font size Print events Font · MS Sans Setif: 1						KM Grid	KM print scale - 100m
Options Font size Font size Font - MS Sans Serif: 1			5 🚖 mm		• [m]	50	50 🔹 [mm]
▼ Print events Font : MS Sans Serif: 1					Font size		Options
Tork, mo ours doily f				ns Serif; 1	Font : MS Sar		Print events
Print limits							Print limits
Iv Print border lines Graph Evaluation				uation	<u>G</u> raph <u>E</u> va		Print border lines
Filin path names Beverse path names (180°)						180°1	Prin path names Reverse path names (1)
✓ Bold head lines		12 单	Path name :	10 🚖	Limits :		Rold head lines
✓ Insert print date KM : 13 🜩 Header 13 🜩		13 🜲	🗧 Header	13 韋	KM :		Insert print date

数据编辑图

可以在最后一张卡中调整一些其他参数。

= 5.8.0. 11 Programm configuration х Options Print Graphs of data editation Graph colors Colours of tolerances Limit 1 Design point 1 2 Design signal 3 Highlight section 4 5 6 7 Graph Path Name Graph Grid color Graph background 8 9 10 Break points 20 \$ Min. wavelength of band-pass [m] 120 🚖 Max. wavelength of band-pass [m] Active cursor [m] 80 \$ Length of floating mean [m] \$ 0.20 🜲 Insensiviti band [mm^2] Smooth of Lin. approximation [m] 5 \$ Alignment gradient [mm/m] 0.02 🜲 ΟK Cancel